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STABILITY AND DECAY OF A CYLINDRICAL FILM OF LIQUID IN A GASEOUS
MEDIUM

V. A. Borodin, Yu. F. Dityakin, and V. I. Yagodkin
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 58—66, 1966

Close to the orifice the film of liquid flowing from the nozzle of a
pressure jet atomizer is approximately cylindrical in shape. Usually
it also decays close to the nozzle and for a preliminary theoretical
study it is convenient to formulate the problem of the stability of a /-\
cylindrical film of liquid moving in a stationary gaseous medium.

Here « is the spatial circular frequency of the os-
cillations (wave number), A is the wavelength of the
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1. We shall consider a cylindrical film of an ideal N\ \Z
liquid surrounded by an ideal fluid medium (Fig. 1) e / V2B -
'’

with outside radius ¢ and inside radius b, We shall L
assume that the liquid moves along the x axis with ve- / iz W\ weis
locity V, while the medium outside and inside the film i \

is stationary. i '
We introduce the system of cylindrical coordinates /

P4 ¥ 24
(r, ¢, x), with the x axis directed along the axis of // /’ \‘
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the film, and the r axis along its radius. We denote
by 160)

/ ’
Oy = O (r, 9, 2,8)  (k=1,2,3) 1.1) // AR\

the velocity potentials of the liquid and the medium, / 1 \ \\
1 ]

The subscript k = 1 refers to the liquid in the film, " W
the subscripts k = 2 and k = 3 to the medium outside L=t
and inside the film, respectively. The densities of S
the liquid forming the film and the medium are de-
noted by p; and p,, respectively,

The velocity potential ®). must satisfy the Laplace

Fig. 2

superposed perturbation, and g is the complex fre-

equation quency of the oscillations with respect to time. Sub-
0@, 1 4D, oD, 1 80, stituting (1 4) in (1. 2), we get
St e T T =0 (1.2) ) .
WA fd —(f 4+ %) =0 (=123, (1.5)
whose solution has the form
Je= Al (ar) + ByK, (ar) (k=1,2,3, (1.6)
where Ay, Bk are arbitrary constants, and Ig{x), Kg(x)
are Bessel functions of order s of imaginary argument.
Starting from the conditions of finite velocities at
Fig. 1 r =0 and r = », we write the velocity potentials for
the motion of the liquid in the film and the surrounding
The flow velocity components will have the form medium as follows:
D = ellaxrsett) [A, ], (ar) + BK, (ar)], 7
ka = Vk -+ vy, Vrk = Vrk, Vwk == Voky (Dz.= giax 1so-Bl) ‘B‘:J(s (ar)’ (D3 — gilax+se-Bl) Asls (ur)..
Vi=V, Ve=V;=0, (1.3) 2. At the boundary between the liquid film and the
Vo = 1 00 - ZE?E P — 8Dy, (k=1,2,3). medium the following conditions must be satisfied.
A R A o At the outer and inner surfaces of the film the pres-
The solution of Eq. (1.2) will be represented in sure difference must be balanced by the surface ten~
the following form: sion pressure
. 1 £ 1 8% =
Di (7, 9, 7, £) = Ju (r) ellexseos) Pep= ot gt | A =
(1.4) _JJt a4, @D
(@=2m/h B=B+iB) (k=1,23). pa_p“"{?"ﬁ_ﬁ"'ﬁw} =0
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Here py, Py, P; are the pressures in the film and
in the medium outside and inside the film, respective-
ly, o is the surface tension of the film liquid relative
to the medium, ¢ and 7 are the deviations of the liquid
particles from the outer and inner surfaces of the un-
disturbed film (Fig. 1), respectively, and

n=a+¥ r=>5b+n. (2.2)
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O
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" Fig. 3

The expressions for the pressures are obtained
from the Lagrange-Cauchy integral in the form

o (00 Wl P P M __L
oL (at +V )+ CER I T aps’
a(D (2.3)
Ps a Po
= + = —i—bp2

Here p; is the pressure in the undisturbed film,
We assume that the deviations ¢ and 11 are periodic
functions of t and x of the following type:

c = €°ei(ax+sq>-at)7 n= ,n°ei(ax+sep—ﬂt), (2 . 4)

where £° and 7° are the amplitudes of the deviations
of the liquid particles from the outer and inner sur-
faces of the undisturbed film, respectively.

Differentiating the expressions for the velocity po-
tentials &;, &, and &;, from (1.7) we obtain, after
substitution of the derivatives in (2.3), the expres-
sions for the pressures

= ipygiantse-Bt) (B — aV) [A,], (ar) 4 B.K, (ar)] + po,
== ip2Bei(ax+sw—Bt) ByK (ar) + p—ola, (2 N 5)
= ip,Pei(axrse—bt) A, ], (ar) 4+ po+ /b,

Using (2.4) and (2.5), from (2.1) we obtain

ipoBK; (aa) By — ip, (B —aV) [4.], (0a) + B\K, («a)] +
1 82
+ola?—x+7)8=0,
s ) 2.6)
ipaPls (ab) Az — ip; (B — aV) [ A1, (db) + BiK, (ab)] +
+o (—az + b—i,——;—)n°=0.

The total differentials of the deviations of the liquid
particles from the surfaces of the undisturbed film
have the form

g = m+%w dn=Dazp 40 gz,

Hence for the normal components of the velocity of

displacement of the liquid particles at the outer and

inner surfaces of the film we have

v,.,=%§-V+%§- at r=a v,,=—g—:V+-g—? at r=b,
v,,:%% at r=gq, vraz% at r=b».
Taking (2. 4) into account, we get
Upy = iL0ei(axroe-BL) (al —B),
Vyp = — P ei(axs0-Bt) at r=a, e.n

Vpy = inoe{(uxﬂw-ﬁt) (aV — B)’

Upg= — iprleilassse-Bt) at r=b.

On the other hand, using expressions (1.3) and
(1.7), the expressions for the normal velocities can
be written as follows:

Or = aghextes-l) [1,” (ar) A; + K.’ (ar) Ba),
Dy = oEie=H9-8) K, (ar) By, (2.8)
Vg = ateiaxtse=B) I (ar) A; .

Here the prime denotes differentiation of the Bessel
function with respect to the argument, Equating the
right sides of (2.7) and (2.8), we obtain:

for the outer surface of the film

(@a)B,]l = iL° @V — B),

" Ksl
a I @a)d, + @.9)

oK (@a)By = — fL°;
for the inner surface of the film

a I, @b)A, + K (@b)By] = in° @V — B),
(2.10)

als (@b)d; = — iPr°.
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Fig. 4

From (2.9) and (2.10) we have
o allg(aa) A+ K (@a) Bl _ _ aK/(aq) By
e= TV —8) o
o Sl () Ayt Ky (@b) Bi] __ od{ (ab) A (2.11)
K i@ —p) o

Substituting the expressions for z°, 7° from (2,11)
in (2.6), we obtain, together with Eqs. (2.11), a sys-
tem of four linear (with respect to arbitrary constants)
equations.
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Introducing the dimensionless parameters

Z=BVpa®/s,

m = aa,

W =paVijs, M=p,/p,,
S=yWwW/M, 2.12)

e=alb=mln,

n = be,

and the notation

4@ =22 @=L

K, )’ K@
_ 2.13)
v=Z—mS, B@)=—12,

we obtain the system

ZI, (mA, + ZK, (B, 4 (mS — 2)I, (M4, =0,
ZI, (m)A, -+ ZK, (m)B, + (mS — Z)K. (m)B, = 0,
Z (mS — Z)I, (mA, + Z (mS — Z)K, (m)B, +
4 [MZ:K, (m) + m (m®* — 1 + DK, (m)1B, =0,
Z (mS — Z)I, (WA, + Z (mS — Z)K, (B, +

+ [MZ, (n) — m (m* — € + s2%9)I, (n)]d, = 0.

(2.14)

Eliminating from the equations of the homogeneous
system (2.14) the arbitrary constants, with notation
(2.13) we get

As+1 (n) —1 0
A — _
st (m) 1 1 -0, @2.15)
g (m) TP ey
124, (n) T 0 agq
a3y = M (mS + 1)8 — m (m¢ — 1 & %) B{m),
as =M (mS + 1)2 ~AAS(?73} — m (m? — g% + s%2) B (n).
S+1
4 r{ 2 2 =09 VN
s Zaijr // L/ (z;‘}z
a47m
4 7
) Z 297 )
L —

4 a8 16 24 d2 40 m

Fig. 5

It is easy to see that the roots of Eq. (2.15) can
be represented in the form of a series in powers of
Mi/2 (after the substitution § = VW/ My:

T=Zy 4+ ZME A+ ZM A+ ... 2.16)

In most cases the guantity M is very small (e.g.,
for a film of water in air M = 1.2 - 107%), therefore
in the expansion (2.16) we will confine ourselves to
a single term, putting 7= Z;. Then from (2.15) we
obtain

[Ay (m)— Ay (n)] Zi* + {[4s (1) + 4syy (M) [m*W +
+m (1 —m?—s?) B (m)] + [4s(m) + Asur (0)] X
X [m*W A, (n) | Asyz () - m (82 — m? —s%e?) B (n)1}Z,® +
F [ () — Avey ()] (W + o1
+m(l—m?—s%) B(m)] (m*W 4, (n)] Agn (R} +
+ m(e? — mt — %) B(n)] =0.

3. We shall consider special cases of the problem without account
for tangential waves, i.e., the development of axisymmetric waves,
for which in (2.17) we set s = 0, which gives

[4g (m) — Ay ()] Zo* + {[4q (n) + Ay (m)] [m*W +
4 m (1 — m}) B (m)] + [de(m) + 4 (n)] [mPWAgn)/Ay(n) -+
+m (8 — m®) B(m)}Zy® + [4i(m) — 44(n)]x (3.1
X[m*W -+ m (1 — m?) B (m)] [m*WA, (n)/A4; (n) +
+m (82 — m®) B (n)] = 0.
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Fig. 6

We shall investigate a filin with an internal cavity of small diam-
eter, setting € = a/b » 1in Eq. (8.1), i.e., a > borm >»n, and
neglecting in its coefficients the quantities Ay(n) and Ayn) as com~
pared with the functions of m. We then obtain

Ay (m) Z 4 (A, (m) [m*W + m (1 — m?) B (m)] +
+ Ag (m) [m2WA, (n)/A4, (n) + m (22 — m®) B (m)]} 2% +-
4 Ay (m) [m*W -+ m (1 — m?) B (m)} X (3.2)

X [m*WA, () / Ay (r) + m (€2 — m?) B (r)] = 0.

Solving Eq. (3.2) with respect to Zg, we have

(ZoD)y = — Ay (m)/A, (m) [m*W + m (1 — m®) B (m)], (3.3)
(Z2), = — [mWA, (n)/A1 () + m (& — m?) B (n)]. (3.4)

The root <z§)1 gives the sotution for the case of a solid cylindrical
jet (b =0, n = 0). This solution can also be obtained with the help of
the corresponding passage to the limit from Eq. (3.1). Dividing this
equation by the quantity

Ao (n)

L we

4 m (et — m2) B (n)

and letting n tend to zero, we get the Eq. (3.3). Using the notation
of (2.13), from (3.3) we get

o WL (m) Ky (m) + m (1 —m?) Iy (m) K1 ()
Zg® = To (m) K ()

s (8.5)

which corresponds to the equation obtained by Shekhtman [1]. Moreover,
we have

Z=mS at ZFL0; £, =0, Z,=mS+ 2, a Z& >0,

Figure 2 gives a graph of the square of the oscillation increment
Z%i as a function of the dimensionless wave number m for different
values of the Weber number W, calculated from (3.9) or {3.3). The
broken lines on the same graph give the relation between (Zzoi)z and
m calculated from (3.4).

We shall determine approximately the geometrical location of
the maximum of the square of the oscillation increment as a function
of the Weber number W at large values of the wave numbers m > 1.

We shall use the asymptotic formulas for Bessel functions [2]

L= L{z)=e | Vane,

ey (3.6)
Kym=Ki(my=e™ Vales .



40 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

From (2.13) at s = 0 we get
A (/A (2) =1, B(z) =1
and instead of (8.3) for m > 1 we have

Zoyfh = mW + m (1 — m?), (8.7)

(777 JL2,
A4z

Differentiating (3. 7) and equating the derivative to zero, we get
2mgW 4 1 — 3mg? = 0.

In the equation obtained it is possible to neglect unity as compared
with the other two large terms, which gives

my= %y W, (3.8)
where m, denotes the critical value of the wave number corresponding
to the maximum of the square of the increment.

Figure 2 gives a graph of the square of the oscillation increment
(Zgi)z as a function of the wave number m for different values of W
as calculated from (3.4).

It is also possible to determine approximately the geometrical
location of the maximum of the square of the increment (Z%i)z for
large values of the wave numbers. In this case,

(ZoP)s = mW + m (2 — m?),

After equating to zero the derivative 2Wm, — 3m® + €2 == 0, we
have

mg = (W + VW + 3e8)', (3.9)

As the next special case we shall consider the case of almost total
absence of velocity. Setting W = 0 in (3.1), we have

[4g (m) — Aq (m)] Zy* + {[4, (n) + 4, _("f)] m (1 — m?) B (m) +
+ 14, (m) + 41 (n)] m (2 — m?) B (n)} Z¢* + (3.10)
+ [A; (m) — 41 (R)] m2 (1 — m?) (2 — mﬂB (m) B (n) = 0.

In Fig. 3 we present graphs of (Zﬁi)l versus wave number for differ-
ent film thicknesses, i.e., different values of the parameter & at W =
=0, as calculated from (3.10). The same figure includes the graph for
the limiting case of a continuous solid jet (Rayleigh case, n = 0),

Figure 3 gives a graph of the analogous relation for the second root
of Eq. (3,10).

From Eq. (3.10) it is possible to obtain the case of oscillations of
a plane film by setting m > 1, » 3 1, m — n = 1 (the radii of the
film a and b are large as compared with the wavelength A). Then Eq.
(8.10) assumes the following form:

Zh— 2L 4+ mf = 0. (3.11)

Hence Zﬁ =m3, f.e., Z;=0, Z,= ima/z’ from which it follows
that in the ahsence of velocity the plane film is stable [3].

We shall also consider the case of large flow velocities of the lig-
uid film: W > 1, m > 1, n 31, m — n = 1. Using the asymptotic
expressions (3. 6) for the Bessel functions at large arguments, we obtain

Ag(2) = Ay () =e¥/n, B(z)=1.

Substituting the expressions obtained in Eq. (3.1), we have
Zp - 2m¥ (W — m) eth (m — n) Z2 -+ mt (W — m)* = 0. (3.12)
Whence we obtain

(Z2) = m? (W — m) thi/y (m ~ n),
; (3.13)
(ZP)y = m* (W — m) cth Y/, (m — n},

which gives instability at W > m and stability at W < m,

Figure 4 gives the square of the increment as a function of wave
number for different values of W and film thickness corresponding to
n=20.9m(e=1/0.9) as calculated from (3.13). Figure 5 gives the
same relations for W = 5 and different film thicknesses, (Z} i) being
given to the scale 0.1.

In order to find the geometric locations of the maxima on the
curves expressing the above-indicated relations, we differentiate the
expressions for the squares of the increments (3. 13) with respect to
m and equate the derivatives to zero. Solving the equations obtained
with respect to W (which is simpler, since they are transcendental
with respect to mg), we obtain

kmg +- 8/ sh 2kmq

W =my T -k st e for (Zy®n (3.14)
3sh2kmo—2kmy |
=my mm]“ for (Zy2), (3.15)
g1
(k =2 >

With increase in wave number both expressions (3.14) and (3.15)
tend to the same limit W = 3m,/2, which is in agreement with (3.8).

Relations (3.14) and (3.15) are given in Fig. 6 for different values
of €.

Finally, we shall consider the case of oscillations of the liquid
film with allowance for the effect of transverse waves, assuming high
flow velocities (W > 1).

Fig. 8

In this case it is necessary to consider only the region of large
wave numbers m > 1, n > 1, within which ligs the curve representing
the relation between increments and wave number at W > 1. Using
Eq. (2.17) and the asymptotic expressions for Bessel functions with
large argument, we obtain

A (2) = Ay, (@) =&/ m, B(z)=1
Zyt + cth (m — n) [2m2W + m (1 — m? — % +
+im (2 — m? — s%e)] Z2 4 (3.16)
+ MW+ m (1 — m? — )] [mW + m (2 — m? — s%%)] = 0,
Assuming that m — n > 1 and cth (m —n) = 1 and that it is possi-
ble to neglect unity as compared with s?, from the previous equation
we obtain

Zt + [2m2 (W — m) — ms® (1 + e%)] Z2 + 3.17
+ (= m (W — m) + mse?] [— m? (W — m) + ms2] = 0,317

Solving Eq. (3.17), we obtain

(ZHy = — m® (W — m) 4 ms%e2,
) (3.18)
(Z3)y = — m* (W — m) + ms?.

The graphs of (8.18) are given by the broken line in Fig. 2.
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4. We shall consider the perturbation modes pre-
dominating in cases for which the oscillation incre-
ments were determined above. The determinant (2.15)
(at s = 0, 7= Z;) corresponds to the system of equa-
tions

Cidy(n) ~C, +C, =0,
CiZPAg (m) + CoZ? + C3 Im*W + m (1—m?) B (m)] = 0,
Ci4; (m) —Cy — Cy =0,

CiZPA, (n) + CiZ¢ +
+Cy [m* WA, (n) | Ay (n) — m (m® — 3B (n)] = 0.

(4.1)

Taking the first three equations of system (4.1),
dividing them by C,, subtracting the first from the
second and adding the second to the third, we get

C
Ax (m) — Ay (n)— Gr— G =0,
C
Ao(m)+A1(m)~—C—:-—{-%’1’-[m2W+m(i—m“)B(m)]Z%zO.

Whence

Cs _ 2@ [Au(m) - Ay (m)]

C, " Z—mW —m({ —mi)B(m)’
G _ 4 4 ze 1o im+ ) 42
T = A () — A () — T By

Using expressions (2. 11) for the amplitudes of the
deviations of the liquid particles at the outer and inner
surfaces of the film for s = 0, we write their ratio

" T G Li(m) "

4.3)

Having determined C3/C; from (4.2) and substitut-
ing its value in (4.3), we obtain the following expres-
sion for the quantity ¢ characterizing the sign of the
ratio of the liquid particle deviations:

& 11 (n)

== =
M Ki(m) [Ag (m) 4 A1 (m)]
1 IJZO‘3 1 (4.4)

= 2o A (m) - Ay (W] [z (m) — Ay (0] [ W - m (E—m2) B (m)]

since the quantity

1,(n) [ Ky (m) [Ag (m) + Ay (m)] > 0.

Now, substituting in (4.4) the square of the oscilla-
tion increment Zg, obtained for some case, we can de-
termine the sign of the ratio of the amplitudes of the
liquid particle deviations from the outer and inner sur-
faces of the film and establish the oscillation phase
shift at these surfaces.

For the case of a liquid film with an internal cavity of small diam-
eter we substitute the first root (3.3) in (4.4) and neglect in the de-
nominator the quantity Ay(n) as small compared with the quantities
Ag(m) and Ay(m). We then get £ = o, which shows the smallness of
the amplitudes of the waves (corresponding to the first root) propagat-
ing along the inner surface of the film as compared with the amplitude
of the waves on the outer surface, In the limit the amplitudes of these
waves tend to zero with decrease in the diameter of the internal cavity,

Substituting the second root (3.4) in (4.4) and also neglecting Ayn)
in the denominator, we obtain

g=
= —[m*W Ay (n) ]} A1 (n) + m (e* — m?) B (n)] x
x{(—Aom)[m3W Aq (n) [ A1 (n) + m(e* —m*) B(n)]+
+ Ay (m)[mAW -m (1—m?) B (m)]) 7,

The second term of the denominator in (4.5) is considerably small~
er than the first; therefore £ > 0 and the amplitudes £°, 7° have the
same sign. Hence, along the outer and inner surfaces of a film with
an internal cavity of small diameter the waves (corresponding to the
second root) are in phase (Fig. 7a).

Fig. 9

For the case of an almost stationary film (analog of the Rayleigh
problem), taking values of the roots (Z.g)l’ 5 of Eq. (8.10) from the
graphs of Fig. 3 and substituting for the corresponding values of the
wave numbers m and n in (4.4), we easily see that the first root cor-
responds to the inequality £ < 0 [the surfaces of the film oscillate out
of phase (Fig. 7b)], while the second root corresponds to the inequality
£ > 0 [these surfaces oscillate in phase (Fig. 7a)].

For the case of motion of a film at large velocities the substitution
of roots (Z%)l’ , from (3.13) in Eq. (4.4) also shows that the first root
corresponds to the inequality € < 0, and the second to £ > 0.

Hence, it may be said that for three special cases considered the
first root (plus sign in front of radical in the solution of Eq. (3.1),
which is quadratic in Z%,) corresponds to the inequality € < 0, which
gives different signs of the amplitudes {°, 7° at the outer and inner
surfaces of the film, i.e,, that these surfaces fluctuate in phase op-
position (Fig. 7b). The second root [minus sign in front of radical in
the solution of quadratic Eq. (3.1)] corresponds to the inequality § <
< 0, which gives the same signs of the amplitudes £°, 1° at the outer
and inner surfaces of the film, i.e., these surfaces fluctuate in phase
(Fig. Ta).

5. We shall also attempt to draw certain (mainly qualitative) con-
clusions concerning the mechanism of decay of the liquid film starting
from the theoretical results obtained, It should be noted that in real
conditions the initial section of the flow of a liquid film into a gaseous
medium from some nozzle is unsteady along the length of the jet,
where as our theoretical problem assumes the presence of steady flow,
which is taken as the original undisturbed motion.

From a consideration of the data on the variation of the oscillation
increment as a function of wave number for the special cases consid-
ered we may conclude the following.

At small values of the Weber number W (if the effect of transverse
waves is disregarded s = 0) from the fact that the second root (Z%i)g is
considerably greater than the first (zﬁi)l (see Fig. 3) and Rayleigh's
principle we may conclude that after leaving the nozzle the film of
liquid develops waves that are in phase on the outer and inner surfaces,
Since the amplitudes of the oscillations quickly increase (the incre-
ment is large), this leads to the collapse of the internal cavity (see
Fig. 8), after which the film is transformed into a continuous solid jet
decaying according to Rayleigh's law (at very small Weber numbers)
or according to the Petrov-Shekhpman law. In this case the decay is
described by the oscillation mode corresponding to the first root (3.3)
of Eq. (3.2).

At large Weber numbers and at § = 0 it is necessary 1o consider two
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cases: for 3 < Wp < 10 the oscillations of the surface of the film are
in phase [second root of (3.13)] with wavelength of the order of its
thickness (M~ h = & — &) and upon decay the integrity of the film
may immediately be destroyed as a result of its beitig strongly pulled
out (Fig. 9). For Wy > 10 on both surfaces of the film waves develop
with a wavelength that is small compared with the film thickness.
These waves may correspond to either of the two types considered (in
phase, which corresponds to the second root, or out of phase, which
corresponds to the first root); the occurrence of waves of either type is
apparently equiprobable in view of the closeness of the values of the
oscillation increments (here Wy, = p,AiV2 / o). In this case the decay
mechanism evidently corresponds to that proposed by Taylor [4], con-
sisting in the separation of liquid droplets with diameters of the order
of the wavelength from both film surfaces without preliminary destruc-
tion of its integrity. The wavelength corresponds to the wave number
my = 2W/3, i.e., is the same as for the case of decay of a plane film.
Here the cylindricity of the film ceases o affect the decay and liquid
droplets of the diameter

d~ A= (5.1)

P_a—V—"’
separate from both surfaces.

The separation from the film of rings of liquid is evidently im«-
probable and may perhaps occur only in a narrow range of Weber num-
bers, somewhere near Wy = 10. As may be seen from Fig. 2, trans-
verse waves have little effect on the oscillation increment, tending to
reduce it.

It should be pointed out that the conclusion about the size of the
droplets separating from the surfaces of the film is not completely ac-
curate owing to the neglect of friction forces in the liquid. Experi-
ments show that the size of the droplets is affected by the Laplace num-~
ber L = acpy / py® (here a is the diameter of the jet, g is the surface
tension, p; is the density of the liquid, and yy is the absolute viscosity
of the liquid).

The action of the viscosity of the liquid on its decay may be re-
garded from two viewpoints. Firstly, the viscous forces lead to achange
in the basic flow—a boundary layer, whose presence must lead to a
change in wave formation, is formed.

Secondly, the viscous forces may have a direct effect on the de-
velopment of perturbations for a given basic flow profile. In this case
a study of the stability must be based not on the equations of an ideal
liquid, but on the Navier-Stokes equations, which seriously compli-
cates the investigation. For liquids that are not too viscous, this effect
is evidently very slight. In view of this it seems to us that the main
role is played only by the change in velocity profile and that the be-
havior of the perturbations is described by the same equations of an
ideal liquid as have been used above.
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