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Close to the orifice the film of liquid flowing from the nozzle of a 
pressure jet atomizer is approximately cylindrical in shape. Usually 
it also decays close to the nozzle and for a preliminary theoretical 
study it is convenient to formulate the problem of the stability of a 
cylindrical film of liquid moving in a stationary gaseous medium. 

1. We shal l  c o n s i d e r  a cy l ind r i ca l  f i lm of an ideal  
liquid sur rounded  by an ideal  fluid med ium (Fig. 1) 
with outside rad ius  a and ins ide  rad ius  b. We shal l  
a s s u m e  that the liquid moves  along the x axis  with ve-  
loci ty  V, while the med ium outside and ins ide  the f i lm 
is s t a t ionary .  

We in t roduce  the s y s t e m  of cy l ind r i ca l  coordina tes  
(r, ~0, x), with the x axis d i rec ted  along the axis  of 
the f i lm, and the r axis along its r ad ius .  We denote 
by 

( O ~ = ( D ~ ' ( r , ~ p , x , t )  (k=~,2,3) (1.1) 

the veloci ty  potent ia l s  of the l iquid and the med ium.  
The subsc r ip t  k = 1 r e f e r s  to the liquid in the f i lm, 
the s u b s c r i p t s  k = 2 and k = 3 to the m e d i u m  outside 
and ins ide  the f i lm,  r e spec t ive ly .  The dens i t i e s  of 
the liquid fo rming  the f i lm and the med ium a re  de-  
noted by Pl and P2, r e spec t ive ly .  

The ve loc i ty  potent ia l  ~k  m u s t  sat isfy  the Laplace 
equat ion 

0~o~ ~ oq~ 02o~ ~ o~o~ O. (1 .2)  

Fig.  1 

The flow ve loc i ty  components  wil l  have the f o r m  

V; = V, V~ = V3 = O, (1.3) 

I 00~ 00~ Oq)~ 
v ~  : r Or?' v:r - -  Oz ' v~.~ = ~  (k=1,2 ,3) .  

The so lu t ion  of Eq. (1.2) wil l  be r e p r e s e n t e d  in 
the fol lowing form:  

(D~ (r,  % x ,  t) = ]~ (r) d(~x+~-~t) 
(1.4) 

Here cz is  the spat ia l  c i r c u l a r  f requency  of the os -  
c i l la t ions  (wave number) ,  X is  the wavelength of the 
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superposed  pe r tu rba t ion ,  and p is  the complex  f r e -  
quency of the osc i l l a t ions  with r e spe c t  to t i me .  Sub- 
s t i tu t ing  (1.4) in (1.2), we get 

p - -  ((X 2 82 
fk" @ T ]k @ -~)  ]~ = 0 (k----- i, 2, 3), (1.5) 

whose solut ion has  the fo rm 

]~ ----- A~:[~ (a t )  -+- B~K~ (ar)  (k = i, 2, 3), (1.6) 

where  Ak, Bk a re  a r b i t r a r y  cons tan t s ,  and Is(x), Ks(x) 
a re  Besse l  funct ions  of o r d e r  s of i m a g i n a r y  a r g u m e n t .  

S ta r t ing  f rom the condi t ions  of f ini te  ve loc i t i es  at 
r = 0 and r = ~, we wr i t e  the ve loc i ty  po ten t ia l s  for  
the mot ion  of the liquid in the f i lm and the s u r r o u n d i n g  
m e d i u m  as  follows: 

qP~ = e i(~+~-~t) [A~I~ (a t )  q- B x g ,  (at)], 
(1.7) 

( I )2=  e ~(~ ~ - ~ 0  B~K~ (ar),  qh  = e ~( . . . .  ~-~t) A3I~ (ar).  

2. At the boundary  be tween  the l iquid f i lm and the 
m e d i u m  the following condi t ions  m u s t  be sa t i s f ied .  

At the ou te r  and i n n e r  su r f ace s  of the f i lm the p r e s -  
su re  d i f fe rence  m u s t  be ba lanced  by the sur face  t en -  
s ion p r e s s u r e  

I I  ~l 02rl I 0~1 l at  r = b  (2.1) 
P a - - P l  = ~ b b 2 a x  2 b ~ 0q~ ~ 
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Here Pl, P2, P~ a re  the p r e s s u r e s  in  the f i lm and 
in the medium outside and ins ide  the fi lm, r e spe c t i ve -  
ly, cr is  the sur face  t ens ion  of the f i lm liquid re la t ive  
to the medium,  ~ and ~/ a re  the devia t ions  of the liquid 
pa r t i c l e s  f rom the ou te r  and i nne r  su r faces  of the un-  
d is turbed  f i lm (Fig. 1), respec t ive ly ,  and 

r I = a § ~, r~ = b ~ v I. (2.2) 

o.oel ~ ~sm $ 

O~ 0,8 /.2 ~.6 m 

Fig. 3 

The exp re s s ions  for the p r e s s u r e s  a re  obtained 
f rom the Lagrange-Cauchy  in t eg ra l  in the form 

P_i ~ (0~z V 0(I)~ ~ -I p0 p~ Oq)~ . p0 z 

(2.3) 
Pa _ O(I)a 2 -  Pc 
p~ at ~ p~ § ~" 

Here P0 is the pressure in the undisturbed film. 

We assume that the deviations ~ and ~I are periodic 

funct ions  of t and x of the following type: 

= ~~ ~] = ~l~ (2.4) 

where ~~ and ~~ are the amplitudes of the deviations 
of the liquid particles from the outer and inner sur- 
faces of the undisturbed film, respectively. 

Differentiating the expressions for the velocity po- 
tentials ~i, ~2, and ~3, from (1.7)we obtain, after 
substitution of the derivatives in (2.3), the expres- 
sions for the p r e s s u r e s  

p~ : ip~e ~(~+~-~t) (~ - -  aV) [A~Is (ar)' § BIK~ Car)] § po, 

p~ = ip2~e ~(~x+~-~t) B~K~ (zcr) § Pc - -  z I a ,  (2.5) 

p3 = ip~e~(~+~-~0 A3I~ (ar) -4- Pc § z / b .  

Using (2.4) and (2.5), f rom (2.1) we obta in  

ip~K~ (aa) B2"-- ip~ (~ - -  aV)  [A~I,  (aa) § B~K,  (aa)] § 
t § ~ ( a  2 - -  ~ -  + - ~ - ) C  = O, 

(2.6) 
i p ~ I .  (ab) A ~ - -  io~ (~ - -  aV) [AxI ,  (ab) + B x K ,  (ab)] + 

i n n e r  sur faces  of the f i lm we have 

v,, = ~ V -t- ~ -  at r =a,  

O~ 
v r ~ = ~  a t  r = a ,  

v , l = - ~ V + - ~  t at r = b ,  

vrs =a~--i - at r ~ b .  

Taking (2.4) into account,  we get 

v,, = iCO( . . . .  ~-~o (av  - -  [~), 

v~2 = - -  i ~ ~  ('~+~-~') a t  r = . ,  

vr, = i~l~ '( . . . . . .  ~') (aV - -  ~), 

vr3 = - -  i~l~ t(~x+s~-~') at r = b. 

(2.7) 

On the o ther  hand, us ing  exp re s s ions  (1.3) and 
(1.7), the exp re s s ions  for the n o r m a l  ve loci t ies  can 
be wr i t t en  as follows: 

v~l ---- ae ~(~x+s+-~t) [Is' (ar) A1 ~ K~' (ar)  B1], 

vr~ = ae i(~::+~-~t) K~' (ar) B~, ( 2 . 8 )  

vra = a e  i(ax+s~-~t) Is' (ar) A3 �9 

Here the p r i m e  denotes d i f fe rent ia t ion  of the Besse l  
funct ion with r e spec t  to the a rgumen t .  Equat ing the 
r ight  s ides  of (2.7) and (2.8), we obtain:  

for  the ou te r  su r face  of the f i lm 

a [I, '  (aa)A~ § K~' (aa)Bll  = i~ ~ (aV - -  ~), 

a g :  (r = - -  ~ ~  

(2.9) 

for  the i n n e r  su r face  of the f i lm 

a'[I's (ab)Ax § g'~ (ab)Bx] = i~q ~ (aV - -  ~), 

a[ :  (ab)A3 = - -  i~l  ~ 

(2.10) 
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F r o m  (2.9) and (2.10) we have 

The tota l  d i f f e ren t i a l s  of the devia t ions  of the l iquid 
p a r t i c l e s  f rom the s u r f a c e s  of the und i s tu rbed  f i lm 
have the fo rm 

d~ ~ dx o~ 0,1 = + ~ dt, d~l ----- - ~  dx § ~ dr. 

Hence for  the n o r m a l  components  of the ve loc i ty  of 
d i s p l a c e m e n t  of the l iquid p a r t i c l e s  at  the ou te r  and 

~o a [Is" (aa) A1 "4- Ks' (aa) B1] aKs' (aa) B2 
: i (aV - -  ~) i~ ' 

~1o= ~[I~ ' (ab)Al+Ks' (ab)Bl l  _ al~'(ab)A8 (2.11) 
i (aV- [~) i[~ 

Subst i tu t ing the e x p r e s s i o n s  for  C~ 7 ~ f rom (2.11) 
in  (2.6), we obtain,  toge the r  with Eqs.  (2.11), a s y s -  
t e m  of four  l i n e a r  (with r e spe c t  to a r b i t r a r y  cons tan t s )  
equat ions .  
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I n t r o d u c i n g  t h e  d i m e n s i o n l e s s  p a r a m e t e r s  

z = V P : : I o ,  W = p s a V  ~ 1 ~, M = P i  I P~,  

n = be ,  S = l P W - / M ,  ( 2 . 1 2 )  

e = a / b = m l n ,  

a n d  t h e  n o t a t i o n  

s, (.) A,+~ (x) = 4"(~) 
A ,  (~) = ~ ,  - K s '  ( . ) ,  

= Z - -  mS, B (x) K,'I,~) = - -  g , ( * l  ' 

(2.13) 

w e  o b t a i n  t h e  s y s t e m  

ZI ;  (n)A t 4- ZK~ (n)Bt  4- (mS  -- Z) I ;  (n)As  = O ,  

Z I ;  (m)A 1 4- Z K ;  (m)B~ 4- (mS  - -  Z)K'~ (m)B2 = 0 ,  

Z (mS  ~ Z)I~ (m)A ~ + Z (mS  - -  Z )Ks  (m)Bt  q- 

+ [MZ~K~ (m) q- m (m ~ --  t + s~)K~ (m)lB~ = 0 ,  ( 2 " 1 4 )  

Z (mS  - -  Z)I~ (n)Aa 4- Z (mS  - Z)Ks  (n)Bx 4- 

4- [MZ~I ,  (n) - -  m (m ~ - -  e 2 4- s~e~)I'~ (n)lA~ = 0 .  

E l i m i n a t i n g  f r o m  t h e  e q u a t i o n s  o f  t h e  h o m o g e n e o u s  

s y s t e m  ( 2 . 1 4 )  t h e  a r b i t r a r y  c o n s t a n t s ,  w i t h  n o t a t i o n  

( 2 . 1 3 )  w e  g e t  

A~+~ in) 

A~+ r (m) 

z~A~ (m) 
z2A, (n) 

- - t  0 t 

- - t  - - t  0 
~ 0 ~  

~s ass 0 
T 2 0 a4a 

a~ = M (mS + *)~ - -  m (m~-- 1 + : )  B ~m) , 

A ,  (n) - -  m (riz 2 - -  ga -~  S2eS) B (n) . a~ = M ires + "rp -A~+~ (n) 

( 2 . 1 5 )  

,z-j, a' ~ gs'?i ~ \ i  . ./\(z;.)z: [2 

n 0.8 1(  g,~ ~.2 ~.0 m 

F i g .  5 

It  i s  e a s y  t o  s e e  t h a t  t h e  r o o t s  o f  E q .  ( 2 . 1 5 )  c a n  

b e  r e p r e s e n t e d  i n  t h e  f o r m  o f  a s e r i e s  i n  p o w e r s  o f  

M 1/2 ( a f t e r  t h e  s u b s t i t u t i o n  S = l / W ~  M) :  

"~ = Z o 4- Z tM' / ,  + Z ~ M  + . . . ( 2 . 1 6 )  

I n  m o s t  c a s e s  t h e  q u a n t i t y  M i s  v e r y  s m a l l  (e .  g , ,  

f o r  a f i l m  o f  w a t e r  i n  a i r  M = 1 . 2  �9 10 -~ ) ,  t h e r e f o r e  

i n  t h e  e x p a n s i o n  ( 2 . 1 6 )  w e  w i l l  c o n f i n e  o u r s e l v e s  to  

a s i n g l e  t e r m ,  p u t t i n g  r = Z 0. T h e n  f r o m  ( 2 . 1 5 )  w e  

o b t a i n  

[A~ (m) - -  A,  (n)] Zo 4 4- {IA~ (n) + A,+~ (m)] [rn2W 4- 

+ m (t - -  m 2 - -  : )  B (m)] + [A,  (m) + A,+, (n)] • 

• [ m 2 W A ,  (n) / A,+I (n) 4- m (e 2 - -  rn 2 - - s i s  ~) B (n)l}Zo 2 4- 

+ [A,+~ (m) - - A , + ~  (n)] [ r n ~ W +  
(2.17) 

+ m (t  - -  rn ~ - - s  =) B ( m ) ]  [ m ~ W A ,  (n ) /A ,+t  (n) 4-  

+ m (:  - -  m ~ - -  : : )  B (n)]  = 0 .  

3. We shall consider special cases of the problem without account 
for tangential waves, i . e . ,  the development of axisymmetric waves, 
for which in (2.1'/) we set s = 0. which gives 

[.4o (m) - -  A o (n)] go 4 + ([Ao (n) + A1 (m)] [mSW + 
+ m (1 ~ rn 2) B (m)]  + [Ae(m) + A (n)] [m~WAo(n)/A~.(n) + 

-l-re. (e ~ - -  m~)B(n)]}Zo ~ Jr" [Al(m ) - -  Al(n)JX" ( 3 . 1 )  
x [m~W "Jr- m ( t  - -  m z) B (m)] [m~WAo (n)/A~ (n) -~- 

+ m  (a 2 - -  rnD B (n)l = 0.  
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Fig. 6 

We shall investigate a film with an internal cavity of small  d iam-  
eter, setting a =  a/b>> l i n E q .  (3.1), i . e . ,  a > > b o r m  >>n. and 
neglecting in its coefficients the q u a n t i t i e s  A0(n ) and Agn) as com-  
pared with the functions of m.  We then obtain 

A o(ra) zo 4 +  {A t (m) [ m s W +  m ( t  - -  m s) B(m)]  + 
"Jr- A ,  (m) [m=WAo (n)/A t (n) "1- m (e s --  m ~) B in)l} Zo s -[- 

-~- A 1 (m) [mSW -~ rn (t - -  m s) B (m)] X (3.2) 

X [m~WAo ( n ) / A  1 (n) -~ m (a s - -  rn s) B (n)] = 0 . 

Solving Eq. (3.2) with respect to Z~. we have 

(ZoDI = --  A1 (m)/Ao (m) [mSW + m (t - -  mD B (re)l, (3.3) 

(ZoSh = --  [m~WAo (n)/A1 (n) -[- rn (e s --  m2) B (n)]. (3.4) 

The root (Z~) 1 gives the solution for the case of a solid cylindrical 
jet (b = 0, n = 0). This solution can also be obtained with she help of 
the corresponding passage to the l imit  from Eq. (3.1).  Dividing this 
equation by the quantity 

s~.. A o ( n )  , " 2 mS) B in )  mi4, A -~ -~ - . vm(e  - -  

and lett ing n tend to zero, we get the Eq. (3.3) .  Using the notation 
of (2.13), from (3.3) we get 

rn2WIl (m) Ko (m) -t- m (t - -  m e) Ix (rn) KI (m) (3.5) 
Zoi 2 ~ Io (ra) Ka (ra) ' 

which corresponds to the equation obtained by Shekhtman [1]. Moreover, 
we have 

Zr= mS at Z0 2 < 0 ;  Z i =  O, Z r =  mS + Zo at Zo: > O . 

Figure 2 gives a graph of the square of the oscillation increment 
Z~i as a function of the dimensionless wave number m for different 
values of the Weber number W, calculated from (3.5) or (3.3). The 
broken lines on the same graph give the relation between (Z~i h a u d  
m calculated from (3.4).  

We shall determine approximately the geometrical  location of 
the m a x i m u m  of the square of the oscillation increment as a function 
of the Weber number W at large values of the wave numbers m > 1. 

We shall use the asymptotic formulas for Bessei functions [2] 

Io (*) = 11 (x) = e :r / ] f 2 ~ ,  

g o ( ~ ) ~ & ( ~ )  = e  -~ f a / 2 *  �9 
(3.~) 
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From (2 .13)  at  s = 0 we get 

A~(=)/A~(~)=~, B ( = ) =  t 

and instead o f ( 3 . 3 )  for m > 1 we have .... 

Substi tuting the expressions obtained in Eq. (3.1), we have 

Z ~  -k- 2m 2 ( W  - -  m) eth (m - -  n) ZoZ 4-  ra~ ( W  - -  m) a = 0 .  ( 3 . 1 2 )  

Whence we obtain 

(3 .7)  

a 

b 

F i g .  7 

Different ia t ing  (3 .7)  and equat ing  the der iva t ive  to zero, we get  

2 m o W  4- i - -  3mo~ = 0. 

In the equat ion  obta ined  i t  is possible to neg lec t  unity as compared 
with the other two large terms, which gives 

m0 = ~/s W,  ( 3 . 8 )  

where m0 denotes the c r i t i c a l  va lue  of the wave number corresponding 

to the m a x i m u m  of the square of the inc rement .  

Figure 2 gives  a graph of the square of the osc i l l a t ion  i nc r emen t  

( Z ~ i h  as a function of the wave number m for different  values  of W 
as c a l c u l a t e d  from (3 .4) .  

It is also possible to de te rmine  approx ima te ly  the g e o m e t r i c a l  

loca t ion  of the m a x i m u m  of the square of the i nc r emen t  (Z~i)  z for 
large values  of  the wave numbers .  In this case,  

(Zoie)2 = m 2 W  + m (e 2 - -  m~). 

After equat ing  to zero the de r iva t ive  2Wra  o - -  3ra~ 4-  e ~ = O, we 
have  

m o = ( W  4- ] / ' W ~ - 3 ~ i i  :/'. (3 .9 )  

As the next  spec ia l  case we shal l  consider the case of a lmost  to ta l  
absence of ve loc i t y .  Set t ing W = 0 in (3 .1) ,  we have  

[A o (m) -- A0 (n)] Z~  4- {[Ao (n) 4- A1 (m)] m (t -- rn~) B (m) 4- 

4-  [ A o ( m ) " } - A i ( n ) ] r a ( s ' ~ - - m 2 } B ( n ) } Z o ' ~  4-  (3 .10)  

4- [.41 (ra) - -  At  (n)l rn ~ (t  - -  m 2) (8 ~ - -  ra~)B (m) B (n) = 0.  

In Fig. 3 we present graphs of (Z~i ) l  versus wave number  for differ-  
ent  f i lm thicknesses,  i . e . ,  different  values  of the pa rame te r  ~ at  W = 

= 0, as c a l c u l a t e d  from (3 .10) .  The same figure inc ludes  the graph for 

the l i m i t i n g  case of a continuous solid je t  (Rayleigh case,  n = 0). 

Figure 3 gives  a graph of  the analogous  re la t ion  for the second root 
of Eq. (3 .10) .  

From Eq. (3 .10)  i t  is possible to obtain the case of osc i l la t ions  of 

a p lane  f i lm by se t t ing m >~ 1, n >~ 1, m - -  n ~ t ( the radi i  of the 

f i lm a and b are large  as compared  with the wave leng th  X). Then  Eq. 

(3 .10)  assumes the fol lowing form: 

Zo 4 - -  2rn'~Zo ~ 4- m 6 = 0. (3 .11)  

Hence  Z~ = m a, i . e . ,  Z i = 0, Z r = ~m a/2, from which i t  follows 

that  in the absence  of ve loc i ty  the p lane  f i lm is s table  [3]. 

We shal l  also consider  the case of la rge  flow ve loc i t i e s  of the l i q -  

uid f i lm: W >~ t ,  m >~  t ,  n >~0 t ,  m - -  n ~ t .  Using the a sympto t i c  

expressions (3 .6)  for the Bessel functions at  la rge  arguments ,  we obta in  

Ao (x) :~  A~ (x) ~ e ~  / zL B (x) = 1 .  

(Z0t2)l = D~ 2 ( W  - -  ?12) thl/2 (m - -  n ) ,  

(3 .13)  
(ZoL~)2 = m~ ( W  - -  m) cth 1/.. (m - -  n) ,  

which gives ins tabi l i ty  at W > m and s tabi l i ty  at W < m.  
Figure 4 gives the square of the inc rement  as a function of wave 

number for different values  of W and f i lm thickness corresponding to 
n = 0 .9  m (~ = 1 / 0 . 9 )  as ca l cu la t ed  from (3 .13) .  Figure 5 gives the 

same re la t ions  for W = 5 and different f i lm thicknesses,  (Z~i)  z be ing 
given to the scale  0 .1 .  

In order to find the geomet r i c  locat ions  of the m a x i m a  on the 

curves expressing the above- ind ica ted  relations,  we different ia te  the 

expressions for the squares of the increments  (3 .13)  with respect to 

m and equate  the der iva t ives  to zero. Solving the equations obta ined 
with respect  to W (which is simpler,  since they are t ranscendenta l  
with respect  to m0), we obta in  

krao 4- s]~ sh 2kin0 
W -~ mo kmo 4- sh 2kmo for (Z012)1 (3 .14)  

3 sh 2kmo - -  2kmo I 
W ~--- rno 2 [sh 2kmo - -  kmo] for (Zoi2)~ (3 .15)  

, 2~ ]" 

With increase  in wave number  both expressions (3 .14)  and (3.15)  

tend to the same l i m i t  W = 3m0/2, which is in ag reemen t  with (3 .8) .  
Relat ions (3 .14)  and (3.15)  a te  given in Fig. 6 for different  values  

of ~. 

Finally, we shall consider the case of oscillations of the liquid 

film with allowance for the effect of transverse waves, assuming high 

flow ve loc i t i e s  (W > 1). 

F i g .  8 

In this  case i t  is necessary to consider only the region of large 

wave numbers  m >> 1, n >> 1, wi thin  which l ies  the curve represent ing 

the re la t ion  between inc rements  and wave number  at  W > 1. Using 

Eq. (2 .17)  and the asympto t i c  expressions for Bessel functions with 

large  argument ,  we obtain 

A s ( x ) , ~ A s + i ( x ) ~ , ~ - ~ e 2 X / : l ,  B ( x ) =  t 

Z** 4- eth (m  - -  n) [2rn~W 4- m (1 - -  m z - -  s 2) + 

4-~m (e2 - -  m~ - -  s%D] Zo ~ 4 -  ( 3 . 1 6 )  

4- [m~W 4- m (1 - -  m ~ - -  s~ [maW 4- m (e ~  m ~ - -  s%~)] = 0. 

Assuming tha t  m - n >> 1 and cth (m - n) ~ 1 and tha t  i t  is possi-  

ble to neg lec t  uni ty  as compared  with s 2, from the previous equat ion  

we obta in  

Zo 4 4- [2m: ( W  - -  m) - -  ms  2 (t 4- e2)] Zo ~ 
4-  [ - -  rn2 ( W  - -  m) 4-  ms% ~] [ - -  m2 ( W  - -  m) @ ms ~] ~ 0. (3"17) 

Solving Eq. (3 .17) ,  we obtain 

(Zo~i = -- rn2 (W -- ra) + r n ~ ,  
(3. i8) 

(Zo~h ~ _ ,~2 (W -- m) 4- ra~2. 

The graphs of (3 .18)  are g iven by the broken l ine in Fig. 2. 
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4.  W e  s h a l l  c o n s i d e r  t h e  p e r t u r b a t i o n  m o d e s  p r e -  
d o m i n a t i n g  in  c a s e s  f o r  w h i c h  t h e  o s c i l l a t i o n  i n c r e -  

m e n t s  w e r e  d e t e r m i n e d  a b o v e .  T h e  d e t e r m i n a n t  ( 2 . 1 5 )  
(at  s = 0, T = Z0) c o r r e s p o n d s  to  t h e  s y s t e m  o f  e q u a -  
t i o n s  

C,Al  (n) - C2 + C4 = 0 ,  

C1Zo2Ao (m) + C~Zo 2 + C3 [m~W + m ( t - -  m ~) B (m)l = O, 

C1A1 (m) - C2 - -  Cs = O, 
( 4 . 1 )  

C1Zo2Ao (n) 27 C~Zo ~ + 

+ Ca [m2WAo (n) / A x (n) - -  m (rn 2 -- e2)B (n)] = 0 .  

T a k i n g  t h e  f i r s t  t h r e e  e q u a t i o n s  o f  s y s t e m  (4 .1 ) ,  

d i v i d i n g  t h e m  b y  C1, s u b t r a c t i n g  t h e  f i r s t  f r o m  t h e  

s e c o n d  a n d  a d d i n g  t h e  s e c o n d  to  t h e  t h i r d ,  w e  g e t  

Substituting the second root (3.4) in (4.4) and also neglecting At(n ) 
in the denominator, we obtain 

~ =  

= - -  [ m * W  A o  (n)  ] A t  (n )  + m (e ~ - -  m*)  B (n) l  x 
(4.5) 

x(--Ao(m)[m2W Ao (n) / At (n) --{- rn(e 2 --mZ)B(n)l+ 

+ Adm)[m~W+m ( t - -m ~) B (m)]) -1, 

The second term of the denominator in (4.5) is considerably small- 
er than the first; therefore g > 0 and the amplitudes go, rio have the 
same sign. Hence, along the outer and inner surfaces of a film with 
an internal cavity of small diameter the waves (corresponding to the 
second root) are in phase (Fig. 7a). 

A~ (m) - -  A~ (n) Cs C4 = 0 ,  
C1 ~ Cx 

t 
C~ C~ [m2W + m (l - -  m ~) B (m)l Zo' Ao(m) + A , ( m ) - - - d [  + ~ [  - -  = O. 

W h e n c e  

Cs Z0 ~ [Ao (m) + A1 (m)] 
= Zo 2 - r a ~ W - m ( l - m  ~)B(m) ' 

04 A~ (m) ~ A,  ( n ) ~  Zo2[Ao(ra)_l_Al(ra)] ( 4 . 2 )  
Ci - -  Zo 2 - m ~ w -  m ( t  - m 2) B ( m )  " 

U s i n g  expressions (2. ii) for t h e  a m p l i t u d e s  of t h e  

d e v i a t i o n s  o f  t h e  l i q u i d  p a r t i c l e s  a t  t h e  o u t e r  a n d  i n n e r  

s u r f a c e s  o f  t h e  f i l m  f o r  s = 0, w e  w r i t e  t h e i r  r a t i o  

~~ C s  Kl(m) 
~1 ~ - -  C4 I i  (n)  " 

( 4 . 3 )  

H a v i n g  d e t e r m i n e d  C 3 / C  4 f r o m  ( 4 . 2 )  a n d  s u b s t i t u t -  

i n g  i t s  v a l u e  i n  ( 4 . 3 ) ,  w e  o b t a i n  t h e  f o l l o w i n g  e x p r e s -  

s i o n  f o r  t h e  q u a n t i t y  } c h a r a c t e r i z i n g  t h e  s i g n  o f  t h e  

r a t i o  o f  t h e  l i q u i d  p a r t i c l e  d e v i a t i o n s :  

~~ Ii (n) _ 

~--" n ~ K1 (ra) [Ao (m) -+ A1 (m)] ( 4 . 4 )  
Zo 2 

Zo ~ [Ao (m) + A1 (n)] + [Aa (m) - -  Ax (n)l [m~W + m (1 - -  raD B (m)] ' 

s i n c e  t h e  q u a n t i t y  

I t ( n ) / K t  (m) [Ao (m) + Ax ( m ) l >  0. 

N o w ,  s u b s t i t u t i n g  i n  ( 4 . 4 )  t h e  s q u a r e  o f  t h e  o s c i l l a -  

t i o n  i n c r e m e n t  Z 2, o b t a i n e d  f o r  s o m e  c a s e ,  w e  c a n  d e -  

t e r m i n e  t h e  s i g n  o f  t h e  r a t i o  o f  t h e  a m p l i t u d e s  o f  t h e  

l i q u i d  p a r t i c l e  d e v i a t i o n s  f r o m  t h e  o u t e r  a n d  i n n e r  s u r -  

f a c e s  o f  t h e  f i l m  a n d  e s t a b l i s h  t h e  o s c i l l a t i o n  p h a s e  

s h i f t  a t  t h e s e  s u r f a c e s .  

For the case of a liquid film with an internal cavity of small diam- 
eter we substitute the first root (3 .8 ) in  (4.4) and neglect in the de- 
nominator the quantity Agn) as small compared with the quantities 
A0(m ) and Al(m ). We then get g = % which shows the smallness of 
the amplitudes of the waves (corresponding to the first root) propagat- 
ing along the inner surface of the film as compared with the amplitude 
of the waves on the outer surface. In the limit the amplitudes of these 
waves tend to zero with decrease in the diameter of the internal cavity, 

Fig. 9 

For the case of an almost stationary film (analog of the Rayleigh 

problem), taking values of the roots (Z02)i, 2 of Eq. (3.10) from the 

graphs of Fig. 3 and substituting for the corresponding values of the 

wave numbers m and n in (4.4), we easily see that the first root cor- 

responds to the inequality ~ < 0 [the surfaces of the film oscillate out 

of phase (Fig 7b)], while the second root corresponds to the inequality 

g > 0 [these surfaces oscillate in phase (Fig. 7a)]. 

For the case of motion of a film at large velocities the substitution 

of roots (Z~)I, 2 from (3.13) in Eq. (4.4) also shows that the first root 

corresponds to the inequality g < 0, and the second to ~ > 0. 

Hence, it may be said that for three special cases considered the 

first root (plus sign in front of radical in the solution of Eq. (3.i), 

which is quadratic in Z~) corresponds to the inequality g < 0, which 

gives different signs of the amplitudes ~~ 7]~ at the outer and inner 

surfaces of the film, i. e,, that these surfaces fluctuate in phase op- 

position (Fig. 7b). The second root [minus sign in front of radical in 

the solution of quadratic Eq. (3. i)] corresponds to the inequality ~ < 

< 0, which gives the same signs of the amplitudes g~ ri~ at the outer 

and inner surfaces of the film, i . e . ,  these surfaces fluctuate in phase 
(Fig. 7a). 

5. We shall also attempt to draw certain (mainly qualitative) con- 
clusions concerning the mechanism of decay of the liquid film starting 
from the theoretical results obtained. It should be noted that in real 
conditions the initial section of the flow of a liquid film into a gaseous 
medium from some nozzle is unsteady along the length of the jet, 
where as our theoretical problem assumes the presence of steady flow, 
which is taken as the original undisturbed motion. 

From a consideration of the data on the variation of the oscillation 
increment as a function of wave number for the special cases consid- 
ered we may conclude the following. 

At small values of the Weber number W (if the effect of transverse 
waves is disregarded s = 0) from the fact that the second root (Z~i) 2 is 
considerably greater than the first (Z~i) t (see Fig. 3) and Rayleigh's 
principle we may conclude that after leaving the nozzle the film of 
liquid develops waves that are in phase on the outer and inner surfaces. 
Since the amplitudes of the oscillations quickly increase (the incre- 
ment is large), this leads to the cotlapse of the internal cavity (see 
Fig. 8), after which the film is transformed into a continuous solid jet 
decaying according to Rayleigh's law (at very small Weber numbers) 
or according to the Petrov-Shekhpman law. In this case the decay is 
described by the oscillation mode corresponding to the first root (3.3) 
of Eq, (3.2). 

At large Weber numbers and at s = 0 it is necessary to consider two 
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cases: for 3 < W h < 10 the oscillations of the surface of the film are 
in  phase [second root of (3.13)] with wavelength of the order of its 
thickness (k ~ h = a - -  b) and upon decay the integrity of the film 
may immediate ly  be destroyed as a result of its being strongly pulled 
out (Fig. 9). For W h > 10 on both surfaces of the film waves develop 
with a wavelength that is sinai1 compared with the fitm thickness. 
These waves may correspond to either of the two types considered (in 
phase, which corresponds to the second root, or Out of phase, which 
corresponds to the first root); the occurrence of waves of either type is 
apparently equiprobable in view of the closeness of the values of the 
oscillation increments (here W h = p2hV ~ / or). In this case the decay 
mechanism evidently corresponds to that proposed by Taylor [4], con- 
sisting in the separation of liquid droplets with diameters of the order 
of the wavelength from both film surfaces without preliminary destruc- 
tion of its integrity. The wavelength corresponds to the wave number 
m0 = 2W/3, i . e . ,  is the same as for the case of decay of a plane f i lm. 
Here the cylindricity of the film ceases to affect the decay and liquid 
droplets of the diameter 

d ~  X =  p-7r (5.1) 

separate from both surfaces. 
The separation from the film of rings of liquid is evidently i m -  

probable and may perhaps occur only in a narrow range of Weber n u m -  
bers, somewhere near W h = 10. As may be seen from Fig. 2, trans- 
verse waves have little effect on the oscillation increment,  tending to 
reduce it .  

I t  should be pointed out that the conclusion about the size of the 
droplets separating from the surfaces of the film is not completely ac-  
curate owing to the neglect of friction forces in the liquid. Experi- 
ments show that the size of the droplets is affected by the Laplace n u m -  
ber L = aapl / ~xl 2 (here a is the diameter of  the jet. o is the surface 
tension, Pl is the density of  the liquid, and p~ is the absolute viscosity 
of the liquid). 

The action of the viscosity of the liquid on its decay may be re- 
garded from two viewpoints. Firstly, the viscous forces lead to a change 
in the basic f l ow-a  boundary layer, whose presence must lead to a 
change in wave formation, is formed. 

Secondly, the viscous forces may have a direct effect on the de- 
velopment of  perturbations for a given basic flow profile, tn this case 
a study of the stability must be based not on the equations of an ideal 
liquid, but on the Navier-Stokes equations, which seriously compli-  
cates the investigation. For liquids that are not too viscous, this effect 
is evidently very slight. In view of this it seems to us that the main 
role is played only by the change in velocity profile and that the be- 
havior of the perturbations is described by the same equations of an 
ideal liquid as have been used above. 
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